Study Design Components of Economic Evaluation

Presented by Dr. Emmanuel Drabo
Overview

• Different types of models that can be constructed to perform cost-effectiveness analysis

• Outlining the study designs that contribute to information for constructing an economic model
Standard Vaccine Cost-Effectiveness Analysis Scenario:
Infant/Child Malaria Vaccine

<table>
<thead>
<tr>
<th>Intervention(s)</th>
<th>Cost</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>New malaria vaccine</td>
<td>• Vaccine costs</td>
<td>• # malaria cases averted</td>
</tr>
<tr>
<td></td>
<td>• Administration costs</td>
<td>• # infant deaths averted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DALYs averted</td>
</tr>
<tr>
<td>Long-lasting, insecticide-treated nets (LLITN)</td>
<td>• LLITN costs</td>
<td>• # malaria cases averted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• # infant deaths averted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DALYs averted</td>
</tr>
<tr>
<td>Do nothing: treat acute malaria cases</td>
<td>Medical cost</td>
<td>• # malaria cases averted</td>
</tr>
<tr>
<td></td>
<td>Non-medical direct cost</td>
<td>• # infant deaths averted</td>
</tr>
<tr>
<td></td>
<td>Indirect costs</td>
<td>• DALYs averted</td>
</tr>
</tbody>
</table>
Creating a Decision Analysis Framework

• Points to consider in framework construction:
 • Not every infant receiving an intervention will have similar outcomes/respond equally
 • Possible outcomes following vaccination:

Vaccination programme

- Vaccinated and no immunity
 - Severe malaria
 - Mild malaria
 - Death

- Vaccinated and partially immune
 - Severe malaria
 - Mild malaria
 - Death

- Vaccinated and fully immune
 - Full recovery
 - Death
Decision Analysis

• Uses mathematical relationships to describe a series of possible infection consequences that could flow from a vaccine program, or lack thereof

• Is a systematic approach to decision-making that accounts for *variability* and *uncertainty* in Vaccine outcomes

• Variability
 • is the likelihood of responding differently to a Vaccine intervention
 • probability of disease infection with or without vaccine

• Uncertainty
 • estimation of probabilities are uncertain
 • Unintended consequences of vaccine use and investment
 • accounted for using sensitivity analyses
Decision Analytical Models

• Decision analytical models are structured
 • to characterize outcomes of vaccines and alternative options
 • is done in a way that is appropriate for the infectious disease condition and vaccine usage
 • to represent clinical/disease pathways that are pertinent to the infection, or pathways avoided with vaccine use

• Allows the synthesis of evidence from a variety of sources to estimate vaccine costs, safety and effectiveness
Decision Analytical Models

• Can allow for events reoccurring over time
 • Reinfection
 • Disease progression
 • Vaccine program completion

• Allows an assessment of different types of uncertainty
 • Unintended consequences of vaccine use
 • Unknown vaccine effectiveness

• Examples of decision analytical models include:
 • Decision tree
 • Markov model
Decision Tree

Possible pathways for a vaccination program against rotavirus compared to no vaccination
Decision Tree: Hib Vaccine

Cycle repeated for 15 birth cohorts (2010-2024)

Figure 1 Model structure for cost-effectiveness of Hib vaccine in Haryana State, India.

Notes: NPNM = non-pneumonia, non-meningitis; PHC = primary health centre
Decision Tree vs. Markov Model

Decision tree
- Consists of pathways representing different **sequence of events**
- Chance (circular) nodes show a point where two or more alternative events are possible
- Pathways are mutually exclusive events
- Probabilities show the likelihood of an event occurring at a chance (circular) node

Markov model
- Represents a set of possible transitions between different **disease states** which evolve over time
- Disease states are mutually exclusive
- Transition probabilities determine
 - the direction and
 - speed of transition between disease states
<table>
<thead>
<tr>
<th>Decision tree</th>
<th>Markov model</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Suitable for ‘once-only’ infectious diseases</td>
<td>• Suitable for handling the progression of infectious disease</td>
</tr>
<tr>
<td>• Less suitable for longer-term outcomes</td>
<td>• Can handle recurring events (e.g. reinfection)</td>
</tr>
<tr>
<td>• possible to add branches (not efficient)</td>
<td></td>
</tr>
<tr>
<td>• But can become unwieldy</td>
<td></td>
</tr>
<tr>
<td>• Difficult to handle recurring events</td>
<td></td>
</tr>
</tbody>
</table>
Probabilities (a, b and c) describe the likelihood of an infant experiencing one of three possible outcomes following vaccination:

- **Vaccinated and no immunity** with probability \(a\)
- **Vaccinated and partially immune** with probability \(b\)
- **Vaccinated and fully immune** with probability \(1 - (a + b)\)

Infant vaccinated
Probabilities

• Probabilities are important parameters in the decision analytical model

• They are defined as:
 • The number of individuals who experience an event out of the entire population being studied =

 \[\frac{\text{(\# of people with an event)}}{\text{(total \# of people at risk for the event)}} \]

 • People must be at risk for the event
 • Prevalence is a probability (or proportion)
 • Probabilities must range between 0 and 1

• Example: if out of 100 infants at risk of developing diarrhoea, 11 cases are detected, the probability of developing diarrhoea →

 \[\frac{11}{100} \rightarrow 0.11 \]
Sources of Probability Estimates

• Probabilities can be obtained from a variety of sources

• These sources typically provide estimates of vaccine efficacy

• Vaccine efficacy = intended impact on measurable end-points

 • Biological markers (e.g. level of detectable antibodies below a defined threshold)
 • Clinical disease stages
 • mild clinical cases
 • severe clinical case
 • physician consultations
 • Hospitalizations
 • Mortality
 • Asymptomatic
Sources of Probability Estimates

• Observational studies
 • Cohort studies
 • Case-control studies
 • Cross-sectional studies

• Experimental studies
 • Randomized control trials (RCTs)
 • Non-randomized trials
 • Quasi-experimental designs

• Systematic Reviews and Meta-Analyses
Difference Between Experimental and Observational Studies

Did investigator assign exposures?

Yes

- Experimental study
 - Random allocation?
 - Yes: Randomised controlled trial
 - No: Non-randomised controlled trial

No

- Observational study
 - Comparison group?
 - Yes: Analytical study
 - No: Descriptive study

Direction?

Exposure → Outcome

- Exposure and outcome at the same time
 - Cohort study
 - Case-control study
 - Cross-sectional study
Observational studies

• Cohort studies:
 • a group of 2 cohorts (exposed and unexposed to an intervention) at risk of an event are followed forward for a given period of time
 • Enables calculation of incidence rates

• Case-control studies
 • Starts with an outcome, such as disease, and looks backward in time for exposures that might have caused the outcome

• Cross-sectional studies
 • Both exposure to the intervention and the measurable end-point are ascertained at the same time
 • Can be used to estimate prevalence/probabilities
Temporal Direction of Observational Studies

- **Cohort study**: Exposure → Outcome
- **Case-control study**: Exposure ← Outcome
- **Cross-sectional study**: Exposure ↔ Outcome

[Diagram showing the temporal direction of various observational studies]
Randomized-Control Trials (RCTs)

• Are often regarded as the gold standard for determining vaccine efficacy
• An important feature of RCTs is the assignment of participants to exposures purely by the play of chance.
 • This reduces the likelihood of bias in determining outcomes
 • When properly implemented, random allocation precludes selection bias.
• Are especially useful for examination of small or moderate effects.
Limitations of RCTs

• Generalizability and extrapolation to different settings can be limited by variations in the biological properties of the virus and other contextual factors.

• For example,
 • Transmission of infection is influenced by contextual factors such as
 • How frequently people interact,
 • Biological transmissibility under the influence of climate
 • People are infected by different “variations” of the same pathogen in different parts of the world resulting in differences in the associated clinical disease and health care utilization.

• Cost of conducting a RCT often run into tens of millions of US dollars.
Systematic Reviews and Meta-Analyses

- Source estimates of vaccine efficacy for economic evaluation should preferably be based upon
 - Systematic reviews of the available literature or
 - Meta-analyses
Systematic Review and Meta-Analysis

What’s the difference?

• Systematic Review
 • A literature review focused on a research question that tries to identify, appraise, select and synthesize **ALL** high quality research evidence relevant to that question
 • Support evidence-based vaccine use with studies from randomized controlled trials (RCTs) or observational studies (e.g. case-control or cohort)

• Meta-Analysis
 • The statistical combination of results from two or more separate studies
 • Can be accomplished following a systematic-review
When Are Systematic Reviews Needed?

• When an important vaccine research question needs to be addressed
 • Gaps in the literature or conflicting results between studies, countries where vaccine is used

• When there is uncertainty regarding an intervention
 • Uncertainty may lie in:
 • Population, Vaccines, Outcomes

• When several primary studies exist
 • Lack of strong evidence
Why Are Systematic Reviews Needed?

• Too much information
• Not enough time
 • More than 2 million articles published yearly from more than 200 biomedical journals
 • Results can often be contradicted by subsequent vaccine trials

• Taken together, a clearer picture can emerge
 • Minimize biases
 • Increase statistical power
 • Improve generalizability
 • Improve allocation of resources for other needed trials = minimize funding of unnecessary trials
Finding All Relevant Studies: Sources

- Electronic databases
 - MEDLINE (Ovid/PubMed)
 - Cochrane Library
 - EMBASE
 - PsychINFO
 - CINAHL
 - UK NICE
 - WHO Vaccines

- Hand searching
 - Reference lists of trials and/or reviews
 - Journals

- Sources for unpublished information
 - FDA website
 - Clinical Trials.gov
 - Registries

- Industry dossiers
Limitations Of Systematic Reviews

• Only as good as what is available and what is included
 • Issue of publication bias
 • Restricted to published results
 • Quality of individual trials
 • “Garbage In, Garbage Out”

• Good quality systematic reviews typically do not address all the issues relevant for decision making
 • Evidence outside the scope of the review may be relevant and needed for decision making
 • Cost and implementation implications may not always be addressed
Limitations Of Systematic Reviews

• Unrealistic expectations
 • What if results conflict with a good quality large vaccine trial?
 • About 10-23% of large trials disagreed with meta-analyses*

• May not always include the most up to date studies
 • When was the last literature search conducted?
 • Estimate: 3-5 years**

• Does not make decisions for the vaccine recipient
 • These are not guidelines
 • The reader uses their own judgment

Meta-analysis

Is combining results of individual studies appropriate?

• The review should provide enough information about the included studies for you to judge whether combining results was appropriate.

• Two types of heterogeneity
 • Clinical heterogeneity
 • Does it make clinical sense to combine these studies?
 • Statistical heterogeneity
 • Are there inconsistencies in the results?
 • Calculation of Q-or I-squared statistic

• Common sources of heterogeneity
 • Clinical diversity between studies, conflicts of interest, and differences in study quality
Data Synthesis

• Quantitative or **meta-analyses**
 • Statistical method for combining results from >1 study
 • Advantage: provides an estimate of treatment effect
 • Disadvantage: misleading estimate if used inappropriately
• Misuse of terminology
 • **Systematic review and Meta-analysis = NOT the same**

Adapted from Cochrane Collaboration open learning materials for reviewers 2002-2003.
Calculating incidence rate

• Incidence rate = \(\frac{\text{Number Of Cases}}{\text{Number Of Person-time}} \)

• In this study
 • Number of malaria cases = 3
 • Number of person-days = 236

• Incidence rate \(\Rightarrow \) \(3 \div 236 = \)
 0.0127 cases per person day
 or 1.27 cases per 100 person-days
 or 12.7 cases per 1000 person-days
 or etc...
Calculating incidence rates

- **How many new cases of malaria at the end of 5-year follow-up?**
 - Answer: 3

- **What is the # of person-years?**
 - Answer: $2.5 + 5 + 1.5 + 5 + 0.5 \Rightarrow 14.5$ person-years

- **What is the incidence rate?**
 - Answer: $\frac{3}{14.5}$
 - $\Rightarrow 0.207$ cases per person year or 20.7 cases per 100 person years
Estimating Parameters for COVID-19 pandemic

• Limited information available, especially from still ongoing RCTs
• Explore regularly published reports and datasets from:
 • WHO
 • Government/MoH
 • JHU
 • Local universities
 • Verifiable news reports